公务员考试数列题(公务员数列题目)2022年省考行测数列问题之公式法巧解通过分析近几年的公务员招考中数量关系模块,在考查数列问题的题型中考生往往容易出错,原因之一是大部分考生在备考的过程中不重视数列问题,有部分考生记不住数列问题相关的公式,部分考生知道公式但不会举一反三、随机应变。数列问题在公务员考试中以等差数列问题出现居多,我们一起来探讨下关于等差数列的相关知识点。 这类题目在题型识别上较为容易,解题方法的使用上需要理解公式,下面通过几个例题来详细讲解等差解数列问题。 例1.(单选题)一本杂志不超过200页,其中最后一页为广告,往前隔X页为连续2页广告,再往前隔X-1页为连续3页广告,以此类推,最后往前隔1页为连续X+1页广告。问这本杂志最多有多少页广告? A.91 B.96 C.105 D.120 解析:从题目特征可判断本题考查数列问题。由题目信息可知整个杂志中广告页数为等差数列,书页总数为1+2+3+……+(X+1),运用等差数列求前n项和公式 false ,即前X+1个正整数的和 false ;非广告页页数为1+2+3+……X,即前X个正整数的和 false 。枚举可知当X=14时,前14项正整数之和是105,前X+1项即前15项正整数之和是120,相加页数为225页,超过200页。当X=13时,前13项正整数之和是91,前X+1项即前14项正整数之和是105,相加页数为196页,不超过200页,符合题意,那么广告页最多为105页。因此,选择C选项。 例2.(单选题)某工厂在做好防疫工作的前提下全面复工复产,复工后第1天的产能即恢复到停工前日产能的60%,复工后每生产4天,日产能都会比前4天的水平提高1000件/日。已知复工80天后,总产量相当于停工前88天的产量,问复工后的总产量达到100万件是在复工后的第几天? A.54 B.56 C.58 D.60 解析:由题目特征可知本题考查数列问题。设复工之前每天产量是x个,那么复工后前4天每天产量是0.6x。80天中4天为一周期,根据等差数列通项公式 ,则最后一个周期即第20个周期的每天产量是0.6x+(20-1)×1000。那么80天的总产量为 ×20=48x+19000×40,由题意48x+19000×40=88x,可知x=19000,复工后第一个周期的日产量为19000×0.6=11400。代入选项,优先从整数个周期代入。B选项,56天即14个周期,最后周期日产量为11400+(14-1)×1000=24400,那么前56天总产量为(11400+24400)÷2×56=1002400,刚好超过100万件,而第55天不能超过。因此,选择B选项。 例3.(单选题)某金融机构向9家“专精特新”企业共发放了4500万元贷款,若这9家企业获得的贷款额从少到多排列,恰好为一个等差数列,且排第3的企业获得420万元贷款,排第8的企业获得的贷款额为: A.620万元 B.660万元 C.720万元 D.760万元 解析:由题目特征可知本题考查数列问题。9家企业共发放4500万元,数额呈等差数列,根据等差数列求和公式,总和=中位数×项数,可知排名第5的企业位于中间获得4500÷9=500(万元)。题干给出排名第3的企业获得420万元,则等差数列的公差为(500-420)÷(5-3)=40(万元),排名第8的企业获得500+40×(8-5)=620(万元)。因此,选择A选项。 上述三个例题都是属于等差数列的具体运用呈现,在后续的备考中详记公式、理解公式的运用,备考一定会事半功倍,备考之路道阻且长,期望大家持之以恒。 公务员考试:怎样解数量关系题公务员考试行测数量关系题解题技巧,如: 代入排除法 从选项入手,代入某个选项后,如果不符合已知条件,或推出矛盾,则可排除此选项。 ①直接代入:把选项一个一个代入验证,直至得到符合题意的选项为止。 ②选择性代入:根据数的特性(奇偶性、整除特性、尾数特性、余数特性等)先筛选,再代入排除的方法。 图解法 图解法运用的图形包括线段图、网状图/树状图、文氏图和表格等。 ①线段图:用线段来表示数字和数量关系的方法。一般,用线段来表示量与量之间的倍数关系或者整个运动过程等,来解决和差倍比问题、行程问题等。 ②网状图或树状图 A.网状图 一般由三组斜线组成,各组分别代表一种事物。从各自的顶端向下面走,分布率就从100%向下降。即用一个三角形网状表示某个对象在三个方面的分布情况。 B.树状图 通过列树状图列出某事件的所有可能的结果,求出其概率。 ③文氏图 用一条封闭曲线直观地表示集合及其关系的图形,能直观地表现出集合之间的关系。其中圆表示一个类,两个圆相交,其相交部分就是两个类的共同部分。两个圆不相交,则说明这两个类没有共同元素。 ④表格 将多次操作问题和还原问题中的复杂过程一一呈现,也可以用表格理清数量关系,帮助列方程。 分合法 利用分与合两种不同的思维解答数学运算的方法。 ①分类讨论 指当不能对问题所给的对象进行统一研究时,需要对研究对象按某个标准进行分类,逐类研究,最后将结论汇总得解的方法。 需注意分类标准统一,分类情况不遗漏、不重复,不越级讨论。一般是多种情况分类讨论后,再利用加法原理求出总的情况数。 ②整体法 A.将某一部分看成一个整体,在问题中总是一起考虑,而不单独求解; B.不关心局部关系,只关心问题的整体情况,直接根据整体情况来考虑关系,这种形式经常用于平均数问题。 公务员数列解题方法与技巧第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。 注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉) 第二步思路A:分析趋势 1, 增幅(包括减幅)一般做加减。 基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。 例1:-8,15,39,65,94,128,170,() A.180 B.210 C. 225 D 256 解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。 总结:做差不会超过三级;一些典型的数列要熟记在心 2, 增幅较大做乘除 例2:0.25,0.25,0.5,2,16,() A.32 B. 64 C.128 D.256 解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256 总结:做商也不会超过三级 3, 增幅很大考虑幂次数列 例3:2,5,28,257,() A.2006 B。1342 C。3503 D。3126 解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D 总结:对幂次数要熟悉 第二步思路B:寻找视觉冲击点 注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引 视觉冲击点1:长数列,项数在6项以上。基本解题思路是分组或隔项。 例4:1,2,7,13,49,24,343,() A.35 B。69 C。114 D。238 解:观察前6项相对较小,第七项突然变大,不成线性规律,考虑思路B。长数列考虑分组或隔项,尝试隔项得两个数列1,7,49,343;2,13,24,()。明显各成规律,第一个支数列是等比数列,第二个支数列是公差为11的等差数列,很快得出答案A。 总结:将等差和等比数列隔项杂糅是常见的考法。 视觉冲击点2:摇摆数列,数值忽大忽小,呈摇摆状。基本解题思路是隔项。 20 5 例5:64,24,44,34,39,() 10 A.20 B。32 C 36.5 D。19 解:观察数值忽小忽大,马上隔项观察,做差如上,发现差成为一个等比数列,下一项差应为5/2=2.5,易得出答案为36.5 总结:隔项取数不一定各成规律,也有可能如此题一样综合形成规律。 视觉冲击点3:双括号。一定是隔项成规律! 例6:1,3,3,5,7,9,13,15,(),() A.19,21 B。19,23 C。21,23 D。27,30 解:看见双括号直接隔项找规律,有1,3,7,13,();3,5,9,15,(),很明显都是公差为2的二级等差数列,易得答案21,23,选C 例7:0,9,5,29,8,67,17,(),() A.125,3 B。129,24 C。84,24 D。172,83 解:注意到是摇摆数列且有双括号,义无反顾地隔项找规律!有0,5,8,17,();9,29,67,()。支数列二数值较大,规律较易显现,注意到增幅较大,考虑乘除或幂次数列,脑中闪过8,27,64,发现支数列二是2^3+1,3^3+2,4^3+3的变式,下一项应是5^3+4=129。直接选B。回头再看会发现支数列一可以还原成1-1,4+1,9-1,16+1,25-1. 总结:双括号隔项找规律一般只确定支数列其一即可,为节省时间,另一支数列可以忽略不计 视觉冲击点4:分式。 类型(1):整数和分数混搭,提示做乘除。 例8:1200,200,40,(),10/3 A.10 B。20 C。30 D。5 解:整数和分数混搭,马上联想做商,很易得出答案为10 类型(2):全分数。解题思路为:能约分的先约分;能划一的先划一;突破口在于不宜变化的分数,称作基准数;分子或分母跟项数必有关系。 例9:3/15,1/3,3/7,1/2,() A.5/8 B。4/9 C。15/27 D。-3 解:能约分的先约分3/15=1/5;分母的公倍数比较大,不适合划一;突破口为3/7,因为分母较大,不宜再做乘积,因此以其作为基准数,其他分数围绕它变化;再找项数的关系3/7的分子正好是它的项数,1/5的分子也正好它的项数,于是很快发现分数列可以转化为1/5,2/6,3/7,4/8,下一项是5/9,即15/27 例10:-4/9,10/9,4/3,7/9,1/9 A.7/3 B 10/9 C -5/18 D -2 解:没有可约分的;但是分母可以划一,取出分子数列有-4,10,12,7,1,后项减前项得 14,2,-5,-6,(-3.5),(-0.5) 与分子数列比较可知下一项应是7/(-2)=-3.5,所以分子数列下一项是1+(-3.5)= -2.5。因此(-2.5)/9= -5/18 视觉冲击点5:正负交叠。基本思路是做商。 例11:8/9, -2/3, 1/2, -3/8,() A 9/32 B 5/72 C 8/32 D 9/23 解:正负交叠,立马做商,发现是一个等比数列,易得出A 视觉冲击点6:根式。 类型(1)数列中出现根数和整数混搭,基本思路是将整数化为根数,将根号外数字移进根号内 例12:0 3 1 6 √2 12 ( ) ( ) 2 48 A. √3 24 B.√3 36 C.2 24 D.2 36 解:双括号先隔项有0,1,√2,(),2;3,6,12,(),48.支数列一即是根数和整数混搭类型,以√2为基准数,其他数围绕它变形,将整数划一为根数有√0 √1 √2 ()√4,易知应填入√3;支数列二是明显的公比为2的等比数列,因此答案为A 类型(2)根数的加减式,基本思路是运用平方差公式:a^2-b^2=(a+b)(a-b) 例13:√2-1,1/(√3+1),1/3,() A(√5-1)/4 B 2 C 1/(√5-1) D √3 解:形式划一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/ (√2+1)=1/(√2+1),这是根式加减式的基本变形形式,要考就这么考。同时,1/3=1/(1+2)=1/(1+√4),因此,易知下一项是1/(√5+1)=( √5-1)/[( √5)^2-1]= (√5-1)/4. 视觉冲击点7:首一项或首两项较小且接近,第二项或第三项突然数值变大。基本思路是分组递推,用首一项或首两项进行五则运算(包括乘方)得到下一个数。 例14:2,3,13,175,() A.30625 B。30651 C。30759 D。30952 解:观察,2,3很接近,13突然变大,考虑用2,3计算得出13有2*5+3=3,也有3^2+2*2=13等等,为使3,13,175也成规律,显然为13^2+3*2=175,所以下一项是175^2+13*2=30651 总结:有时递推运算规则很难找,但不要动摇,一般这类题目的规律就是如此。 视觉冲击点8:纯小数数列,即数列各项都是小数。基本思路是将整数部分和小数部分分开考虑,或者各成单独的数列或者共同成规律。 例15:1.01,1.02,2.03,3.05,5.08,() A.8.13 B。 8.013 C。7.12 D 7.012 解:将整数部分抽取出来有1,1,2,3,5,(),是一个明显的和递推数列,下一项是8,排除C、D;将小数部分抽取出来有1,2,3,5,8,()又是一个和递推数列,下一项是13,所以选A。 总结:该题属于整数、小数部分各成独立规律 例16:0.1,1.2,3.5,8.13,( ) A 21.34 B 21.17 C 11.34 D 11.17 解:仍然是将整数部分与小数部分拆分开来考虑,但在观察数列整体特征的时候,发现数字非常像一个典型的和递推数列,于是考虑将整数和小树部分综合起来考虑,发现有新数列0,1,1,2,3,5,8,13,(),(),显然下两个数是8+13=21,13+21=34,选A 总结:该题属于整数和小数部分共同成规律 视觉冲击点9:很像连续自然数列而又不连贯的数列,考虑质数或合数列。 例17:1,5,11,19,28,(),50 A.29 B。38 C。47 D。49 解:观察数值逐渐增大呈线性,且增幅一般,考虑作差得4,6,8,9,……,很像连续自然数列而又缺少5、7,联想和数列,接下来应该是10、12,代入求证28+10=38,38+12=50,正好契合,说明思路正确,答案为38. 视觉冲击点10:大自然数,数列中出现3位以上的自然数。因为数列题运算强度不大,不太可能用大自然数做运算,因而这类题目一般都是考察微观数字结构。 例18:763951,59367,7695,967,() A.5936 B。69 C。769 D。76 解:发现出现大自然数,进行运算不太现实,微观地考察数字结构,发现后项分别比前项都少一位数,且少的是1,3,5,下一个缺省的数应该是7;另外缺省一位数后,数字顺序也进行颠倒,所以967去除7以后再颠倒应该是69,选B。 例19:1807,2716,3625,() A.5149 B。4534 C。4231 D。5847 解:四位大自然数,直接微观地看各数字关系,发现每个四位数的首两位和为9,后两位和为7,观察选项,很快得出选B。 第三步:另辟蹊径。 一般来说完成了上两步,大多数类型的题目都能找到思路了,可是也不排除有些规律不容易直接找出来,此时若把原数列稍微变化一下形式,可能更易看出规律。 变形一:约去公因数。数列各项数值较大,且有公约数,可先约去公约数,转化成一个新数列,找到规律后再还原回去。 例20:0,6,24,60,120,() A.186 B。210 C。220 D。226 解:该数列因各项数值较大,因而拿不准增幅是大是小,但发现有公约数6,约去后得0,1,4,10,20,易发现增幅一般,考虑做加减,很容易发现是一个二级等差数列,下一项应是20+10+5=35,还原乘以6得210。 变形二:因式分解法。数列各项并没有共同的约数,但相邻项有共同的约数,此时将原数列各数因式分解,可帮助找到规律。 例21:2,12,36,80,() A.100 B。125 C 150 D。175 解:因式分解各项有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加变化把形式统一一下易得1*1*2,2*2*3,3*3*4,4*4*5,下一项应该是5*5*6=150,选C。 变形三:通分法。适用于分数列各项的分母有不大的最小公倍数。 例22:1/6,2/3,3/2,8/3,() A.10/3 B.25/6 C.5 D.35/6 解:发现分母通分简单,马上通分去掉分母得到一个单独的分子数列1,4,9,16,()。增幅一般,先做差的3,5,7,下一项应该是16+9=25。还原成分母为6的分数即为B。 第四步:蒙猜法,不是办法的办法。 有些题目就是百思不得其解,有的时候就剩那么一两分钟,那么是不是放弃呢?当然不能!一分万金啊,有的放矢地蒙猜往往可以救急,正确率也不低。下面介绍几种我自己琢磨的蒙猜法。 第一蒙:选项里有整数也有小数,小数多半是答案。 见例5:64,24,44,34,39,() A.20 B。32 C 36.5 D。19 直接猜C! 例23:2,2,6,12,27,() A.42 B 50 C 58.5 D 63.5 猜:发现选项有整数有小数,直接在C、D里选择,出现“.5”的小数说明运算中可能有乘除关系,观察数列中后项除以前项不超过3倍,猜C 正解:做差得0,4,6,15。(0+4)*1.5=6 (2+6)*1.5=12 (4+6)*1.5=15 (6+15)*1.5=31.5,所以原数列下一项是27+31.5=58.5 第二蒙:数列中出现负数,选项中又出现负数,负数多半是答案。 例24:-4/9,10/9,4/3,7/9,1/9,( ) A.7/3 B.10/9 C -5/18 D.-2 猜:数列中出现负数,选项中也出现负数,在C/D两个里面猜,而观察原数列,分母应该与9有关,猜C。 第三蒙:猜最接近值。有时候貌似找到点规律,算出来的答案却不在选项中,但又跟某一选项很接近,别再浪费时间另找规律了,直接猜那个最接近的项,八九不离十! 例25:1,2,6,16,44,() A.66 B。84 C。88 D。120 猜:增幅一般,下意识地做了差有1,4,10,28。再做差3,6,18,下一项或许是(6+18)*2=42,或许是6*18=108,不论是哪个,原数列的下一项都大于100,直接猜D。 例26:0.,0,1,5,23,() A.119 B。79 C 63 D 47 猜:首两项一样,明显是一个递推数列,而从1,5递推到25必然要用乘法,而5*23=115,猜最接近的选项119 第四蒙:利用选项之间的关系蒙。 例27:0,9,5,29,8,67,17,(),() A.125,3 B129,24 C 84,24 D172 83 猜:首先注意到B,C选项中有共同的数值24,立马会心一笑,知道这是阴险的出题人故意设置的障碍,而又恰恰是给我们的线索,第二个括号一定是24!而根据之前总结的规律,双括号一定是隔项成规律,我们发现偶数项9,29,67,()后项都是前项的两倍左右,所以猜129,选B 例28:0,3,1,6,√2,12,(),(),2,48 A.√3,24 B。√3,36 C 2,24 D√2,36 猜:同上题理,第一个括号肯定是√3!而双括号隔项成规律,3,6,12,易知第二个括号是24,很快选出A |