高职考数学必考知识点归纳(职高数学重点知识归纳)高中数学必考知识点归纳大全总结 是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,下面是我给大家带来的数学必考知识点归纳大全,以供大家参考! 高中数学必考知识点归纳大全 1、 高一数学 知识点总结:集合一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…}如:{我校的 篮球 队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示 方法 :列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N或N+整数集Z有理数集Q实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大 括号内表示集合的方法。{x∈R|x-32},{x|x-32} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 2、高一数学知识点总结:集合间的基本关系 1.“包含”关系—子集 注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A 2.“相等”关系:A=B(5≥5,且5≤5,则5=5) 实例:设A={x|x2 -1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作AB(或BA) ③如果A?B,B?C,那么A?C ④如果A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集,一般我们把不含任何元素的集合叫做空集。 3、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。(2)按元素的个数多少,分为有/无限集 关于集合的概念: (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。 (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。 (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。 集合可以根据它含有的元素的个数分为两类: 含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 非负整数全体构成的集合,叫做自然数集,记作N; 在自然数集内排除0的集合叫做正整数集,记作N+或N; 整数全体构成的集合,叫做整数集,记作Z; 有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。) 实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。) 1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}. 有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。 例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}. 无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}. 2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。 例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0” 而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为 {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+}, 大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。 一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)} 它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。 例如:集合A={x∈R│x2-1=0}的特征是X2-1=0 高一数学必修一知识点摘要 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 ②过两点的直线的斜率公式: 注意下面四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 ①点斜式:直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 ②斜截式:,直线斜率为k,直线在y轴上的截距为b ③两点式:()直线两点, ④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。 ⑤一般式:(A,B不全为0) ⑤一般式:(A,B不全为0) 注意:○1各式的适用范围 ○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数); (4)直线系方程:即具有某一共同性质的直线 高一数学知识点小结 1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 顶点坐标 对称轴 y=ax^2 (0,0) x=0 y=a(x-h)^2 (h,0) x=h y=a(x-h)^2+k (h,k) x=h y=ax^2+bx+c (-b/2a,[4ac-b^2]/4a) x=-b/2a 当h0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到, 当h0时,则向左平行移动|h|个单位得到. 当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象; 当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象; 当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象; 当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象; 因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=ax^2+bx+c(a≠0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a). 3.抛物线y=ax^2+bx+c(a≠0),若a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小. 4.抛物线y=ax^2+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b^2-4ac0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0 (a≠0)的两根.这两点间的距离AB=|x?-x?| 当△=0.图象与x轴只有一个交点; 当△0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0. 5.抛物线y=ax^2+bx+c的最值:如果a0(a0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax^2+bx+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0). 7.二次函数知识很容易与 其它 知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的 热点 考题,往往以大题形式出现. 高中数学必考知识点归纳大全相关 文章 : ★ 高中数学必考知识点归纳整理 ★ 高中数学必考知识点归纳 ★ 高中数学知识点全总结最全版 ★ 高一数学有用必考知识点归纳 ★ 高考数学必考知识点考点2020大全总结 ★ 高中数学知识点大全 ★ 高中数学全部知识点提纲整理 ★ 高中数学考点整理归纳 ★ 高中数学知识点总结及公式大全 ★ 高中数学知识点全总结 中职升高职(三校生高考)数学考什么内容?我有课本,照着写给你!第一章:基础知识(数与式,方程与方程组,指数与对数、简易逻辑)第二章:集合,不等式与不等式组。第三章:函数。第四章:三角函数。第五章:平面向量。第六章:直线、二次曲线。第七章:多面体和旋转体。第八章:数列。第九章:复数。 就这些啦,每年考试不会有多大变化,基本都是考这些。都是基础性的东西,不是很难。 望楼主可以采纳!谢谢! 高等数学是高中知识还是大学知识!里面那些是大专要考的知识点呢?高等数学是大学知识。 大专高等数学包含的内容有: 1、函数。包括初等代数、集合与逻辑符号等预备知识,函数的概念与图形,三角函数、指数函数、对数函数,以及经济学中的常用函数、需求函数与供给函数、成本函数、收益函数与利润函数。 2、极限与连续。包括函数极限的概念、函数极限的性质与运算,无穷小量与无穷大量,连续函数的概念与性质。 3、导数与微分。包括导数的运算,几种特殊函数的求导法、高阶导数。 4、微分中值定理和导数的应用。包括微分中值定理,洛必达法则,函数单调性的判定,函数的极值及其求法,函数的最值及其应用,曲线的凹凸性和拐点,曲线的渐近线,导数的经济分析中的应用。 5、一元函数积分学。包括原函数与不定积分的概念,几本积分公式,换元积分法,分部积分法,微分方程初步,定积分的概念及其基本性质,微积分基本定理,定积分的换元积分法和分部积分法,反常积分,定积分的应用。 6、多元函数微积分。包括多元函数的基本概念,偏导数,全微分,多元复合函数的求导法则,隐函数的求导法则,二元函数的极值,二重积分。 扩展资料: 专科,1999年以前指大学专科学科专业教育,1999年以后除了师范、医学、公安类的专科专业教育外,专科通常是指高等职业教育的专科学历教育(简称高职),是在完成中等教育的基础上培养掌握本专业必备的基础理论、专门知识,具有从事本专业实际工作的基本专业技术(高职为职业技能)和初步能力。 在中国,专科学历教育由高职高专承担,部分普通本科高校同时开设有专科(高职)专业。专科学历层次不颁发学位证书而颁发普通高等学校毕业证书或成人高等学校毕业证书。 |